Skip to content

Deformations

compute_internalforces(phi2l, q2) ¤

Recovery velocities in material frame.

Parameters:

Name Type Description Default
phi2l ndarray

Intrinsic force modes in local frame

required
q2 ndarray

Force modal coordinate

required

Returns:

Type Description
ndarray

Internal force field

Source code in feniax/intrinsic/postprocess.py
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def compute_internalforces(phi2l: jnp.ndarray, q2: jnp.ndarray) -> jnp.ndarray:
    """Recovery velocities in material frame.

    Parameters
    ----------
    phi2l : jnp.ndarray
        Intrinsic force modes in local frame
    q2 : jnp.ndarray
        Force modal coordinate

    Returns
    -------
    jnp.ndarray
        Internal force field

    """

    X2 = jnp.tensordot(phi2l, q2, axes=(0, 1))  # 6xNnxNt
    return X2.transpose((2, 0, 1))

compute_strains(cphi2l, q2) ¤

Recovery strains in material frame.

Parameters:

Name Type Description Default
cphi2l ndarray

Intrinsic strain modes in local frame

required
q2 ndarray

Force modal coordinate

required

Returns:

Type Description
ndarray

Strain field

Source code in feniax/intrinsic/postprocess.py
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def compute_strains(cphi2l: jnp.ndarray, q2: jnp.ndarray) -> jnp.ndarray:
    """Recovery strains in material frame.

    Parameters
    ----------
    cphi2l : jnp.ndarray
        Intrinsic  strain modes in local frame
    q2 : jnp.ndarray
        Force modal coordinate

    Returns
    -------
    jnp.ndarray
        Strain field

    """

    X3 = jnp.tensordot(cphi2l, q2, axes=(0, 1))  # 6xNnxNt
    return X3.transpose((2, 0, 1))

compute_velocities(phi1l, q1) ¤

Recovery velocities in material frame.

Parameters:

Name Type Description Default
phi1l ndarray

Intrinsic velocity modes in local frame

required
q1 ndarray

Velocity modal coordinate

required

Returns:

Type Description
ndarray

Velocity field

Source code in feniax/intrinsic/postprocess.py
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def compute_velocities(phi1l: jnp.ndarray, q1: jnp.ndarray) -> jnp.ndarray:
    """Recovery velocities in material frame.

    Parameters
    ----------
    phi1l : jnp.ndarray
        Intrinsic velocity modes in local frame
    q1 : jnp.ndarray
        Velocity modal coordinate

    Returns
    -------
    jnp.ndarray
        Velocity field

    """

    X1 = jnp.tensordot(phi1l, q1, axes=(0, 1))  # 6xNnxNt
    return X1.transpose((2, 0, 1)) # Ntx6xNn

integrate_strains(ra_0n, Cab_0n, X3t, sol, fem) ¤

Function to integrate position from strains at a given time step

Source code in feniax/intrinsic/postprocess.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def integrate_strains(ra_0n, Cab_0n, X3t, sol, fem):
    """
    Function to integrate position from strains at a given time step
    """

    ds = sol.data.modes.X_xdelta
    C0ab = sol.data.modes.C0ab  # 3x3xNn
    # TODO: make as fori loop
    Cab = jnp.zeros((3, 3, fem.num_nodes))
    ra = jnp.zeros((3, fem.num_nodes))

    comp_nodes = jnp.array(fem.component_nodes[fem.component_names[0]])[1:]
    numcomp_nodes = len(comp_nodes)
    Cab0_init = C0ab[:, :, 0]
    init = jnp.hstack([Cab_0n, Cab0_init, ra_0n.reshape((3, 1))])
    ds_i = ds[comp_nodes]
    ds_i = jnp.broadcast_to(ds_i, (3, ds_i.shape[0])).T.reshape((numcomp_nodes, 3, 1))
    strains_i = X3t[:3, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
    kappas_i = X3t[3:, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
    # import pdb; pdb.set_trace()
    C0ab_i = C0ab[:, :, comp_nodes].transpose((2, 0, 1))
    xs = jnp.concatenate([C0ab_i, strains_i, kappas_i, ds_i], axis=2)
    last_carry, Cra = jax.lax.scan(integrate_X3, init, xs)
    ra = ra.at[:, 0].set(ra_0n)
    Cab = Cab.at[:, :, 0].set(Cab_0n)
    ra = ra.at[:, comp_nodes].set(Cra[:, :, 3].T)
    Cab = Cab.at[:, :, comp_nodes].set(Cra[:, :, :3].transpose((1, 2, 0)))

    for ci in fem.component_names[1:]:
        comp_father = fem.component_father[ci]
        comp_nodes = jnp.array(fem.component_nodes[ci])
        numcomp_nodes = len(comp_nodes)
        if comp_father is None:
            node_father = 0
        else:
            node_father = fem.component_nodes[comp_father][-1]
        Cab_init = Cab[:, :, node_father]
        Cab0_init = C0ab[:, :, node_father]
        ra_init = ra[:, node_father]
        init = jnp.hstack([Cab_init, Cab0_init, ra_init.reshape((3, 1))])
        ds_i = ds[comp_nodes]
        ds_i = jnp.broadcast_to(ds_i, (3, ds_i.shape[0])).T.reshape(
            (numcomp_nodes, 3, 1)
        )
        strains_i = X3t[:3, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
        kappas_i = X3t[3:, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
        C0ab_i = C0ab[:, :, comp_nodes].transpose((2, 0, 1))
        xs = jnp.concatenate([C0ab_i, strains_i, kappas_i, ds_i], axis=2)
        last_carry, Cra = jax.lax.scan(integrate_X3, init, xs)
        ra = ra.at[:, comp_nodes].set(Cra[:, :, 3].T)
        Cab = Cab.at[:, :, comp_nodes].set(Cra[:, :, :3].transpose((1, 2, 0)))

    return Cab, ra

integrate_strainsl(ra_0n, Cab_0n, X3t, sol, fem) ¤

Function to integrate position from strains at a given time step

Source code in feniax/intrinsic/postprocess.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def integrate_strainsl(ra_0n, Cab_0n, X3t, sol, fem):
    """
    Function to integrate position from strains at a given time step
    """

    ds = sol.data.modes.X_xdelta
    C0ab = sol.data.modes.C0ab  # 3x3xNn
    # TODO: make as fori loop
    Cab = jnp.zeros((3, 3, fem.num_nodes))
    ra = jnp.zeros((3, fem.num_nodes))

    comp_nodes = jnp.array(fem.component_nodes[fem.component_names[0]])[1:]
    numcomp_nodes = len(comp_nodes)
    Cab0_init = C0ab[:, :, 0]
    init = jnp.hstack([Cab_0n, Cab0_init, ra_0n.reshape((3, 1))])
    ds_i = ds[comp_nodes]
    ds_i = jnp.broadcast_to(ds_i, (3, ds_i.shape[0])).T.reshape((numcomp_nodes, 3, 1))
    strains_i = X3t[:3, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
    kappas_i = X3t[3:, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
    # import pdb; pdb.set_trace()
    C0ab_i = C0ab[:, :, comp_nodes].transpose((2, 0, 1))
    xs = jnp.concatenate([C0ab_i, strains_i, kappas_i, ds_i], axis=2)
    last_carry, Cra = jax.lax.scan(integrate_X3l, init, xs)
    ra = ra.at[:, 0].set(ra_0n)
    Cab = Cab.at[:, :, 0].set(Cab_0n)
    ra = ra.at[:, comp_nodes].set(Cra[:, :, 3].T)
    Cab = Cab.at[:, :, comp_nodes].set(Cra[:, :, :3].transpose((1, 2, 0)))

    for ci in fem.component_names[1:]:
        comp_father = fem.component_father[ci]
        comp_nodes = jnp.array(fem.component_nodes[ci])
        numcomp_nodes = len(comp_nodes)
        if comp_father is None:
            node_father = 0
        else:
            node_father = fem.component_nodes[comp_father][-1]
        Cab_init = Cab[:, :, node_father]
        Cab0_init = C0ab[:, :, node_father]
        ra_init = ra[:, node_father]
        init = jnp.hstack([Cab_init, Cab0_init, ra_init.reshape((3, 1))])
        ds_i = ds[comp_nodes]
        ds_i = jnp.broadcast_to(ds_i, (3, ds_i.shape[0])).T.reshape(
            (numcomp_nodes, 3, 1)
        )
        strains_i = X3t[:3, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
        kappas_i = X3t[3:, comp_nodes].T.reshape((numcomp_nodes, 3, 1))
        C0ab_i = C0ab[:, :, comp_nodes].transpose((2, 0, 1))
        xs = jnp.concatenate([C0ab_i, strains_i, kappas_i, ds_i], axis=2)
        last_carry, Cra = jax.lax.scan(integrate_X3l, init, xs)
        ra = ra.at[:, comp_nodes].set(Cra[:, :, 3].T)
        Cab = Cab.at[:, :, comp_nodes].set(Cra[:, :, :3].transpose((1, 2, 0)))

    return Cab, ra